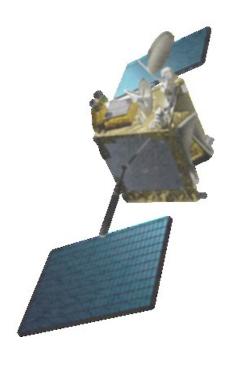
A Technical Comparison of Three Low Earth Orbit Satellite Constellation Systems to Provide Global Broadband

Inigo del Portillo (portillo@mit.edu), Bruce G. Cameron, Edward F. Crawley Massachusetts Institute of Technology

October 1st 2018

69th International Astronautical Congress 2018 Bremen, Germany


IAC-18-B2.1.7

Motivation

- In the last 3 years there has been a new wave of proposals of **LEO mega-constellations to provide broadband**. (11 proposals)
- This paper compares the **technical aspects** of three of these systems as described in their FCC application filings:
 - OneWeb, SpaceX, and Telesat
- Moreover, we analyze ground segment requirements and estimate the total system forward capacity (sellable capacity) for each of the systems.

Description: OneWeb's Ku&Ka-band System

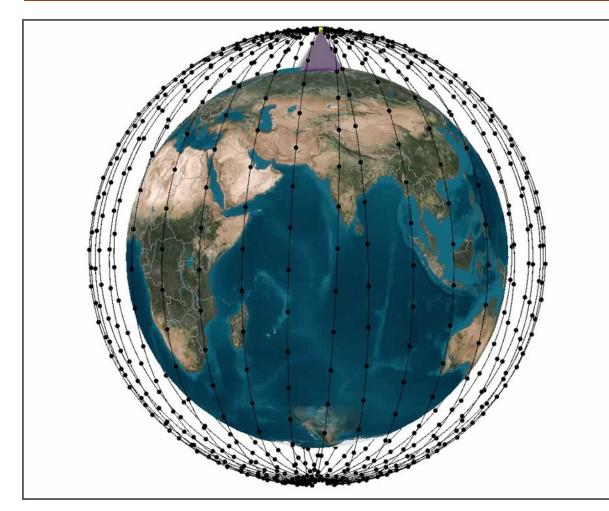
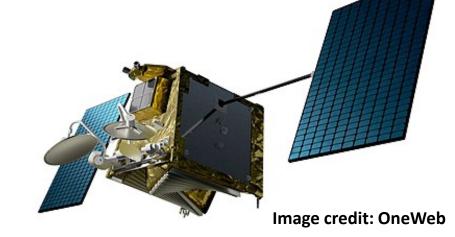



Figure 1.- OneWeb 720 satellites constellation

System characteristics

- 720 satellites in 18 polar planes at 1,200 km @ 86.4^o (40 satellites per plane)
- User links @ Ku-band, gateway links @Ka-band
- Bent pipe architecture
- No crosslinks
- Compact satellites 145 kg.
- Target first launch Q4'18, Q1'19 (21 Soyuz rockets)
- Beginning of service 2019

Comparison Methodology

Results

Conclusions

Description: SpaceX's Ku&Ka-band System

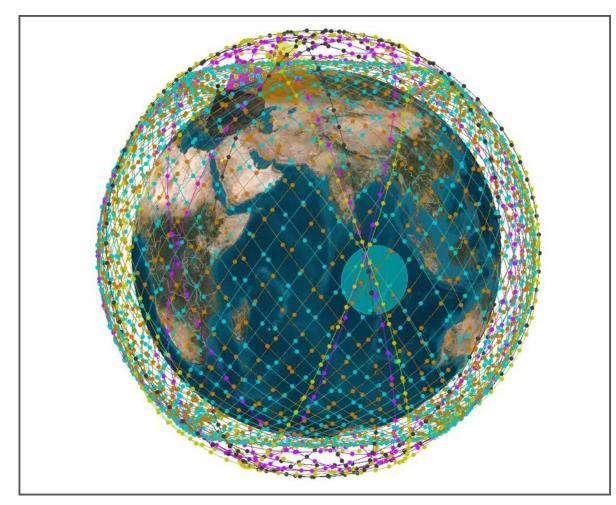


Figure 2.- SpaceX 4,425 satellites constellation

System characteristics

- 4,425 Satellites in 83 planes. Inclined orbits + polar orbits.
- User links @ Ku-band, gateway links @Ka-band
- Optical crosslinks between satellites
- Digital payload with beam steering and shaping capabilities
- Medium size satellites 435 kg, in house designed.
- Target first launch 2019 (~170 Falcon 9 launches for full constellation deployment)
- Beginning of service 2020

Image credit: SpaceX

rison 🕨 Methodology

Results

Description: Telesat's Ka-band System

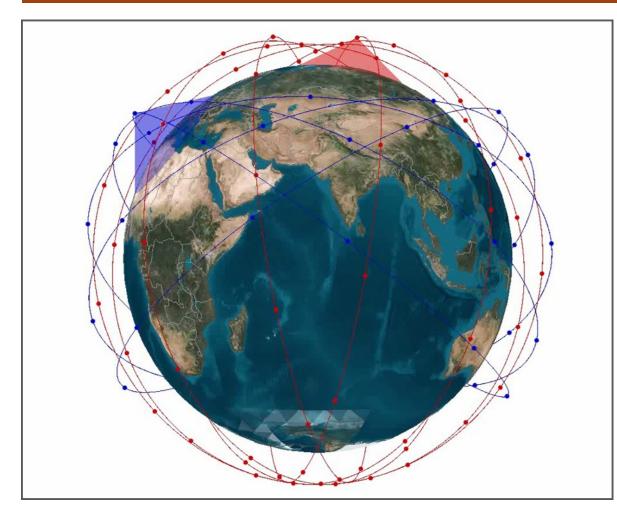
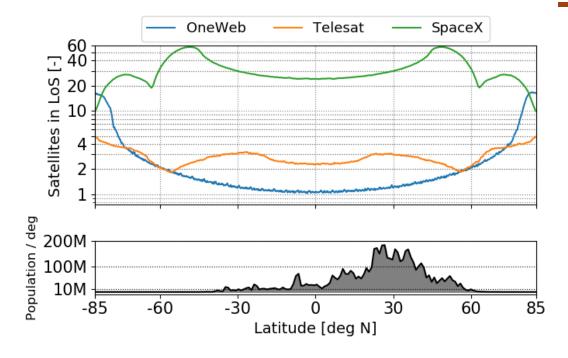


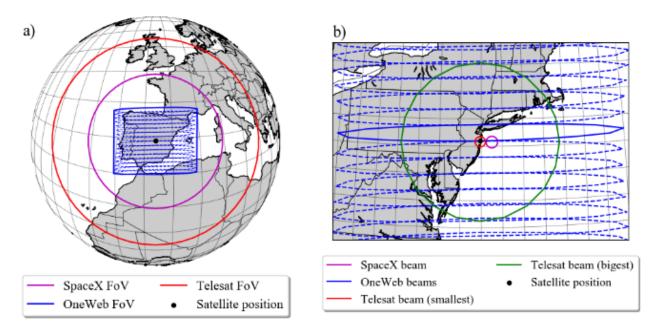
Figure 3.- Telesat 117 satellites constellation

System characteristics

- 117 Satellites in 12 planes:
 - Polar: 6 planes x 12 satellites at 1,000 km @ 99.5^o
 - Inclined: 5 planes x 10 satellites at 1,200 km @ 37.4
- User and gateway links @Ka-band
- Optical crosslinks between satellites
- Digital payload:
 - Beamforming: steering and shaping capabilities for at least 16 beams.
 - Demodulation + modulation + IP-Routing
- Launch 2021


Results

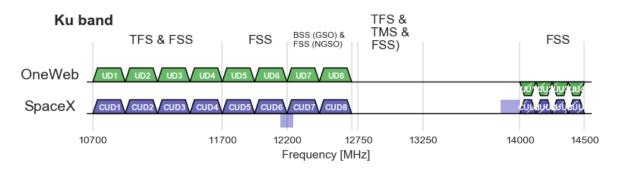
- Beginning of service 2022
- External design and manufacturing.

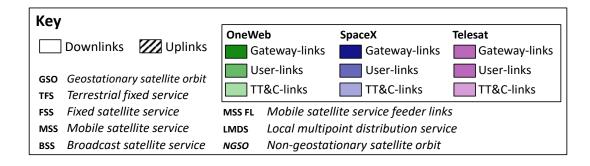


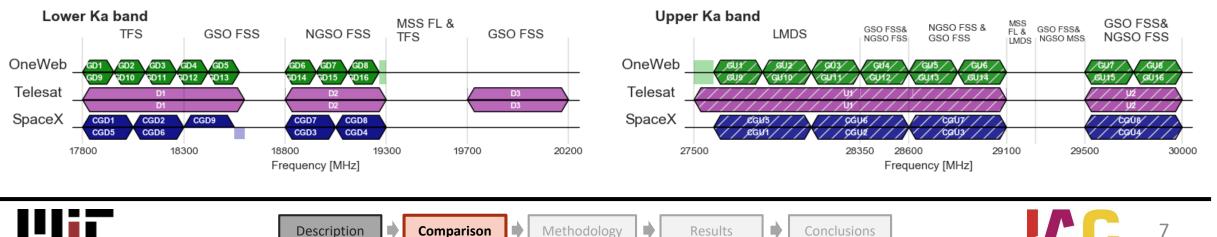
Satellites in line of sight and beam characteristics

- Significant differences in beam footprint and field-of-view areas.
- SpaceX and Telesat have steerable and shapeable user beams. One web has fixed beams.

- Great differences in the number of satellites within line of sight for different latitudes between constellations.
- Telesat and SpaceX concentrate their satellites within the ±60 latitude band by using inclined and polar orbits.



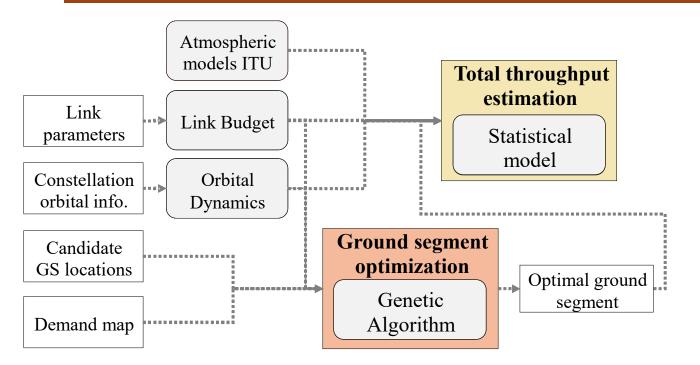

Results

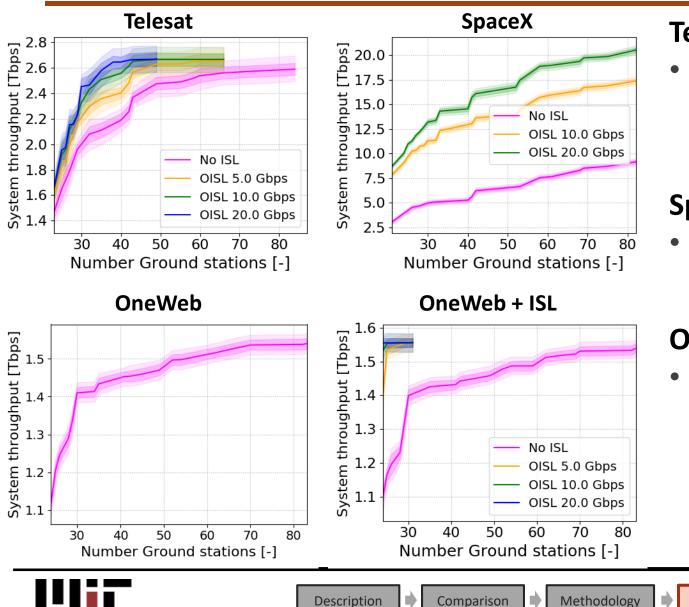


Frequency allocations

- OneWeb and SpaceX use Ku-band for user links. Single polarization, RHCP, and Ka-band for gateway links.
- Telesat shares the Ka-band spectrum between user and gateways links.
- Potential interferences during in-line events between:
 - OneWeb and SpaceX user links.
 - Telesat user links and OneWeb and SpaceX feeder links

Methodology: Model overview




Table 8. Average and maximum potential data-rateper satellite (author's estimation)

Parameter	Telesat	OneWeb	SpaceX	
Avg. Data-rate	35.65	8.80	20.12	Gbps
Max. Data-rate	38.68	9.97	21.36	Gbps
# Active GW antennas	2	1	1	-
Limiting factor	GW	User	GW	
	uplink	downlink	uplink	-

Results: Throughput estimation

Telesat:

 Maximum throughput is 2.66 Tbps and 42 ground stations are required to achieve it.

SpaceX:

Maximum throughput of 23.7 Tbps with > 100 GS.

OneWeb

Results

• Maximum throughput is 1.56 Tbps, and need 71 ground station to achieve it.

Conclusions

Telesat:		Telesat	OneWeb	SpaceX	
 Telesat is the most efficient system in terms of average Gbps/satellite, with more than 4x SpaceX and 10x OneWeb. 	Num. satellites	117	720	4,425	-
	Max. total system FWD capacity	2.66	1.56	23.7	Tbps
	Number of ground locations for max. FWD	42	71	123	-
 SpaceX: SpaceX limiting factor will be the ground segment, as they need to deploy a very large number of ground stations and gateways to operate at full power. OneWeb For OneWeb the space segment will be the limiting factor (user links data-rate). 	capacity				
	Number of gateway antennas for max FWD capacity	221	725	~3,500	-
	Required number of gateways per ground station	5-6	11	30	-
	Average data-rate per satellite (real)	22.74	2.17	5.36	Gbps
	Max. data-rate per satellite	38.68	9.97	21.36	Gbps
	Satellite efficiency	58.8	21.7	25.1	%

Results

Conclusions

- Estimated maximum system throughputs in the forward direction:
 - OneWeb's 1.56 Tbps with 71 ground stations (720 satellites)
 - Telesat 2.66 Tbps with 40 ground stations (117 satellites)
 - SpaceX 23.7 Tbps with 123 ground stations (4,425 satellites)
- The most effective system in terms of Gbps/satellite is Telesat (22.7 Gbps/sat), thanks to:
 - Low number of high capacity satellites, low elevation angles to user links, use of ISL and digital payloads, and use of two active gateway antennas.
- SpaceX constellation will require an extremely large ground segment with hundreds of ground stations and ~3,500 gateway antennas to operate at maximum throughput.
- OneWeb's constellation could significantly reduce their ground segment if they had used inter-satellite links (even at moderate data-rates ~5 Gbps).

Description

THANK YOU!

Contact e-mail: portillo@mit.edu

