

GROUND SEGMENT ARCHITECTURES FOR LARGE LEO CONSTELLATIONS WITH FEEDER LINKS IN EHF-BANDS

Inigo del Portillo (portillo@mit.edu), Bruce Cameron, Edward Crawley

March 7th 2018

IEEE Aerospace Conference 2018 Big Sky, Montana

Introduction

- Several large constellations of LEO satellites have been proposed by different companies as a means to provide global broadband.
 - The first generation, uses Ka-band feeder links and Ka/Ku-band user links
- Increasing demand of satellite connectivity is driving the industry towards the development of systems with feeder links in EHF and optical bands.
 - Currently Q/V band and E-band systems are being considered for the second generation of these constellations
- Advantages of transitioning to higher freq. bands:
 - Increased bandwidth -> Higher data-rates
 - Reduced number of ground stations (?)
- Disadvantages of transitioning to higher freq. bands:
 - Higher atmospheric attenuation
 - Reduced availabilities

OneWeb's 720 satellite constellation

Research Objective

- Analyses for Q/V band feeder link systems for GEO in the literature [1, 2]
 - Transition to EHF bands allows for higher capacities or lower number of ground stations.
- What happens for LEO constellations?
 - How many ground stations are required to provide service at a given availability?
 - What data-rates that can be achieved?

The objective of this paper is to assess the performance of ground segment architectures for large constellations of LEO satellites using feeder links in Q/V-band and E-band, and compare them against analogous architectures that use Ka-band (current architectures).

Performance drivers for comparison across architectures:

- Number of ground stations: Used as a proxy value for the cost of the ground segment
- **Coverage**: Measured as the percentage of the region of interest where service can be provided meeting a minimum QoS requirements
- **Data-rate:** Measured as the spatial average data-rate both in typical operation conditions as well as availability threshold conditions

Our approach: Overview

Objective: Optimize the ground segment (minimize number of ground stations for maximum performance)

General overview – Analysis of a single architecture:

- 1. Define the ground segment architecture
- 2. Define the locus of the satellites and region of interest
- 3. Obtain coverage of each ground station and identify regions
- 4. For each point on each region, compute the CDF of the achievable data-rate.
- 5. Translate spatial results into aggregated metrics (coverage, average data-rate)

Step 1: Define ground segment architecture

We consider 77 candidate ground stations which:

- Guarantee global coverage: evenly distributed across all continents
- **Do not present spatial correlated weather:** separated at least 1,000 km.
- Are realistic ground stations sites: Currently operative teleports of large satellite operators

Step 2: Reference constellation and demand model

Reference Constellation:

After analyzing the characteristics of 6 different proposed LEO constellations, we identify the following parameters for the reference constellation design:

- Altitude of 1,200 km
- Combination of polar and non-polar orbital planes
- Satellites have 2 feeder antennas that can be used simultaneously
- Minimum elevation angle to a ground station 10 deg.
- Minimum elevation angle for a VSAT to communicate with a satellite is 45 degrees.
- There are no inter-satellite links.

Demand Model:

Used to define the region of interest and to weight which regions are more important to cover.

- Focus only on terrestrial services
- Assume higher data rates are required in high population density areas.

Step 4: Methodology to compute CDF of the uplink data-rate (single ground station)

Link Budget

DVB-S2X recommendation MODCODs ITU-R atmospheric models [1]:

- Rain: ITU-R P.838-5, ITU-R P.618-12
- Cloud: ITU-R P.840-6
- Gaseous: ITU-R P.676-10

For each location, we can derive the CDF of the total atmospheric attenuation...

and using it, the CDF of the data-rate.

	Uplink							
	E-band	V-band	Ka-band	Unit				
Frequency parame	eters							
Frequency	83.5	50	29	[GHz]				
Bandwidth	5	4	2.1	[GHz]				
Transmitter param	eters							
Tx Antenna D.	2.4	2.4	2.4	[m]				
Tx Power (RF)	100	100	100	[W]				
Receiver paramete	ers							
Rx Antenna D.	0.50	0.50	0.50	[m]				
LNB Noise Factor	4	3	2	[-]				
Interference parameters								
C3IM	25.00	30.00	35.00	[dB]				

Step 4: Computing the CDF of the total uplink data-rate in a given orbital position (multiple ground stations)

The data-rate to the *i*-th ground station is a random variable (X_i) , with a known CDF. If there are 5 ground stations in line of sight:

 $X = \{X_1, X_2, X_3, X_4, X_5\}$

X = {28, 34, 9228, 0} Gbps

We define the order statistic random variables

 $Y_{(1)} < Y_{(2)} < Y_{(3)} < Y_{(4)} < Y_{(5)}$ **0** < **0** < **22** < **28** < **34** Gbps

$$Y_{(1)} = \min(\{X_1, X_2, X_3, X_4, X_5\})$$

$$Y_{(5)} = \max(\{X_1, X_2, X_3, X_4, X_5\})$$

We assume that a satellite, will always connect to the N=2 ground stations with the highest datarate. Therefore, the total uplink data-rate is: $Z = Y_{(4)} + Y_{(5)}$ Z = 28 + 34 = 50 Gbps

How do compute the CDF of Z (total uplink data-rate for the satellite)?

- Analytically: Possible but computationally very expensive [1, 2]
- Numerically: Using Monte Carlo methods.

Step 5: Translate spatial results into aggregated metrics

Metrics

- Coverage: Percentage of orbital positions that serve the region of interest (demand map) with a data rate higher than 5 Gbps
- Average data rate: Weighted average of data-rate obtained at orbital positions that serve the region of interest
 - Weighted using the demand map

Consider both typical operation conditions and availability threshold conditions.

- Typical operation conditions are values obtained for at least 95% of the time.
- Availability threshold conditions are values obtained for at least 99.5% of the time.

Results in 4 metrics:

	Coverage	Data-rate
Typical Conditions	cov ₉₅	Z ₉₅
Availability Threshold	COV _{99.5}	Z _{99.5}

Our approach: Overview

Objective: Optimize the ground segment (minimize number of ground stations for maximum performance)

General overview – Analysis of a single architecture:

- 1. Define the ground segment architecture
- 2. Define the locus of the satellites
- 3. Obtain coverage of each ground station and identify regions
- 4. For each point on each region, compute the CDF of the achievable data-rate
- 5. Aggregate spatial results in simplified metrics (coverage, data-rate)

Optimization

Optimization formulation

Find the ground segment with the minimum *number of ground stations* while maximizing both the *spatial average data-rate* and the *coverage*.

Optimization function:

$$O = \frac{1}{2} cov_{95} \sum_{p \in D} Z_{95}(p) \log_{10}(f_{pop(p)}) + \frac{1}{2} cov_{99.5} \sum_{p \in D} Z_{99.5}(p) \log_{10}(f_{pop(p)})$$
weight factor
weight factor
weight factor

- The optimization problem is well suited for using genetic algorithms.
- We can use a divide and conquer strategy, exploiting the spatial isolation across continents.
- We propose to use a two step genetic algorithm:
 - Step 1) Optimize at a continent level using a genetic algorithms (N_{pop} = 1,000, N_{gen} = 30)
 - Step 2) Optimize globally using good architectures from step 1) as the feed for new global candidate locations (N_{pop} = 500, N_{gen} = 15)
- It takes ~90 seconds to evaluate each architecture, we parallelize execution using a 44-core server. (< 24 hours of computation to generate the tradespace)

Results: Q-band

• For sufficiently large networks, high coverages can be obtained under typical conditions, but not enough coverage under availability threshold conditions.

- Average data-rates up to 45 Gbps per satellite can be obtained for large coverages when deploying large ground segments
- Most popular locations: Novosibirk, Svalbard, New Zealand, Fiji, Kumsan and Homer

	Availability								
	95	5%	99.5%						
	Data rate	Coverage	Data Rate	Coverage					
Ν	[Gbps] [%]		[Gbps]	[%]					
20	22.58	69.13	17.09	35.14					
25	28.91	76.06	23.78	49.05					
30	34.06	77.69	30.93	57.47					
35	38.50	86.93	35.25	67.80					
40	40.29	92.11	36.28	70.84					
45	43.13	92.19	40.36	74.79					

Results: E-band

 High coverages under typical conditions, not enough coverage under availability threshold conditions

- Average data-rates of up 55 Gbps per satellite can be obtained for large coverages, with regions that peak at 82 Gbps.
- Most popular locations: Novosibirk, Kumsan, Svalvard, New Zealand, Fiji and Lurin

Metric values for E-band system

	Availability								
	95	5%	99.5%						
	Data rate	Coverage	Data Rate	Coverage					
Ν	[Gbps]	[%]	[Gbps]	[%]					
20	29.32	59.20	26.16	39.45					
25	38.57	68.07	35.25	49.16					
30	44.53	75.63	40.81	54.08					
35	48.66	84.00	44.81	64.17					
40	52.81	84.54	49.89	68.35					
45	55.50	87.47	52.83	73.29					

Comparison to Ka-band

Metric values for Ka-band system				Metric values for Q-band system					Metric values for E-band system					
Availability					Availability					Availability				
	95% 99.5%				95% 99.5%				95% 99.5%			5%		
	Data rate	Coverage	Data Rate	Coverage		Data rate	Coverage	Data Rate	Coverage		Data rate	Coverage	Data Rate	Coverage
Ν	[Gbps]	[%]	[Gbps]	[%]	Ν	[Gbps]	[%]	[Gbps]	[%]	Ν	[Gbps]	[%]	[Gbps]	[%]
20	17.91	75.00	13.92	62.60	20	22.58	69.13	17.09	35.14	20	29.32	59.20	26.16	39.45
25	21.57	75.68	19.22	68.91	25	28.91	76.06	23.78	49.05	25	38.57	68.07	35.25	49.16
30	24.73	85.48	22.17	77.72	30	34.06	77.69	30.93	57.47	30	44.53	75.63	40.81	54.08
35	26.30	90.53	23.63	83.91	35	38.50	86.93	35.25	67.80	35	48.66	84.00	44.81	64.17
40	28.30	92.37	26.21	86.77	40	40.29	92.11	36.28	70.84	40	52.81	84.54	49.89	68.35
45	29.15	93.91	27.14	88.84	45	43.13	92.19	40.36	74.79	45	55.50	87.47	52.83	73.29

Data-rate:

- Q/V-band 25-48% higher than comparable Ka-band systems, ٠
- E-band 70 90 % higher than Ka-band. •

Coverage:

Even with large ground segments of 45 ground stations, an availability of 99.5% • (threshold conditions) cannot be guaranteed in more than 25 % of the region of interest. (vs. only 12 % in Ka-band)

Conclusions and Future Work

- We presented a numerical method to compute the CDF of the achievable data-rate on any orbital position when multiple uncorrelated ground stations are in line-ofsight.
- We conducted optimization to determine the optimal ground segment architectures on Q- and E-band required to support a LEO constellation when no inter-satellite links are present, and we evaluated its performance in terms of datarate and coverage.
- EHF bands have potential to greatly increase the average data-rates of these constellations (with respect to Ka-band).
 - Up to 50% higher for Q/V-band and 90% higher for E-band
- However, achieving acceptable coverage figures requires a very large of ground stations.

Future work

- Analyze systems with inter-satellite links: optical, RF
- Hybrid gateway links: combination of Ka- and EHF-bands.

THANK YOU

Q&A

contact: portillo@mit.edu

BACK-UP SLIDES

CONSTELLATION PROPOSALS CONSIDERED

			-			
	OneWeb-Ka	OneWeb-V	Boeing - V	SpaceX-Ka	TeleSat - Ka	Telesat - V
FCC filing #	20160428-00041	20170301-00031	20160622-00058	20161115-00118	20161115-00108	20170301-00023
Filing date	4/28/2016	03/01/2017	6/22/2016	11/15/2016	11/15/2016	3/1/2017
# satellites	720	720 + 1280	2956	4425	117	117
# planes	18	34	74	83	11	11
Orbit type	LEO	LEO-MEO	LEO	LEO	LEO	LEO
Orbital info (#plane x #sat alt @ inc)	18x36 1200@87.9°	18x36 1200@87.9° 16x80 8465@45.5°	32x50 1150@53° 32x50 1150@53° 32x50 1110@53.8 8x50 1130@74° 5x75 1275@81° 6x75 1325@70°		6x12 1100@99.5° 5x9 1248@37.4°	6x12 1100@99.5° 5x9 1248@37.4°
ISL	No	No	No	Yes, optical	Yes, optical	Yes, optical
Service band	Ku	V	V	Ku	Ka	V
BW service links	2 GHz	2 GHz	5 GHz	2 GHz	2.1 GHz	4.5 GHz
Service user-sat	12.75 - 13.25 GHz 14.0 - 14.5 GHz	48.2 - 50.2 GHz	47.2 - 50.2 GHz 50.4 - 52.4 GHz	14.0 - 14.5 GHz	27.5 - 29.1 GHz 29.5 - 30.0 GHz	47.2 - 50.2 GHz 50.4 - 51.4 GHz
Service sat-user	10.7 - 12.7 GHz	40.0 - 42.0 GHz	37.5 - 42.5 GHz	10.7 - 12.7 GHz	17.8 - 18.6 GHz 18.8 - 19.3 GHz 19.7 - 20.2 GHz	37.5 - 42.0 GHz
Min el. angle	55	45	45	40	10	?
Feeder band	Ka	V	V	Ka	Ka	V
BW feeder links	2.1 GHz	5 GHz	5GHz	2.1 GHz	2.1 GHz	4 GHz
Feeder sat-GW	17.8 - 18.6 GHz 18.8 - 19.3 GHz 19.7 - 20.2 GHz	37.5 - 42.5 GHz	37.5 - 42.5 GHz	17.8 - 18.6 GHz 18.8 - 19.3 GHz	17.8 - 18.6 GHz 18.8 - 19.3 GHz 19.7 - 20.2 GHz	37.5 - 42.0 GHz
Feeder GW-sat	27.5 - 29.1 GHz 29.5 - 30.0 GHz	42.5 - 43.5 GHz 47.2 - 50.2 GHz 50.4 - 51.4 GHz	47.2 - 50.2 GHz 50.4 - 52.4 GHz	27.5 - 29.1 GHz 29.5 - 30.0 GHz	27.5 - 29.1 GHz 29.5 - 30.0 GHz	47.2 - 50.2 GHz 50.4 - 51.4 GHz
# sim. gateways	1 (2 antennas)	1 (2 antennas)	?	1	2	2
D. GW antenna	2.4 m	1.2 - 3.4 m	?	1 - 3.5 m	3.5	1.8

Table 1: Summary of proposed LEO constellations designs.

DEMAND MAP

Data-rate @ 99.5 % for a 55 ground station ground segment using E-band feeder links

Coverage @ 99.5 % for a 55 ground station ground segment using E-band feeder links

Coverage @ 99.5% for a 55 ground-station network

